
22 March & April 2018 www.elektormagazine.com

DCF77 Emulator
with ESP8266
Replace over-air time by Internet time

By Massimo Fusari (Italy) & Luc Lemmens (Elektor Labs)

About twenty years ago I recycled and modernised a vintage clock with Nixie tubes built by my father in
the nineteen seventies. I replaced the digital logic by a microcontroller and used a DCF77 receiver module
instead of the original 50-Hz derived timebase.

PROJECTLABS

Features
• Always the right time
• Internet connected
• Replaces DCF77 receiver modules
• ESP8266-based

www.elektormagazine.com March & April 2018 23

values that make up a valid frame into
zeroes and ones at the right position in
the frame.
The 100-ms timer mentioned above calls
the function DcfOut. This function reads
the bit array filled by CalculateArray and
delivers the values in the shape of 100-
ms (zeroes) and 200-ms (ones) pulses
on pin GPIO2.
The conversion of NTP time to DCF77

works for you, or use an oscilloscope to
observe the output signal polarity from
your original DCF77 receiver.

All the hard work is done by
ReadAndDecodeTime
The program is in the shape of an Arduino
sketch. As is customary for these kinds
of programs, they first execute a func-
tion called setup and then continuously
repeat a function called loop.
The function setup first sets up the ESP-
01’s inputs and outputs and it initializes
some global variables. It also starts a
timer that fires every 100 milliseconds.
This timer is used to produce the DCF77
encoded bit stream (refer to the Internet
for the details about the DCF77 proto-
col). Finally, a connection to the Wi-Fi
network is established.
The function loop is very simple and
runs just once every minute. When it
does, it either connects to the time server
to obtain the current time or it tries to
reconnect to the network because the
connection was lost for some reason.
The reason for the function loop to idle
is because it delegates all the hard work
to the function ReadAndDecodeTime. This
is the workhorse that really connects to
the NTP server to request the time and
then converts it into something that can
be easily encoded in the DCF77 format.
The function CalculateArray is assigned
with this task. It converts the different

Over many years the clock has worked
fine, but recently DCF77 reception in
my house has worsened due to electro-
magnetic interference created by modern
switching power supplies, I suppose. So
I decided to replace the DCF77 receiver
by some form of Network Time Protocol
(NTP) client.
An ESP-01 ESP8266-based module would
be perfect for the job. It is cheap, pow-
erful, and can be easily programmed in
Arduino style with all the benefits of open
source libraries. The result is a DCF77
receiver emulated by an ESP-01 module
connected to my home Wi-Fi network.
Only one output pin is required to drive
the old Nixie clock.
Although the idea behind this project is
quite straightforward, the implementa-
tion may be a bit more elaborate. The
software may need a few modifications
to make it compatible with your DCF77
clock, so Luc at Elektor Labs designed
a small printed circuit board (PCB) that
makes it very easy to (re)program the
ESP-01 module if and when needed.
The circuit presented here therefore is
a DCF77 emulator and ESP-01 program-
mer rolled into one circuit.

The hardware is simple
The schematic of the emulator (Fig-
ure 1) isn’t particularly complex. The
ESP-01 module is represented here by
MOD1, powered by a 3.3-V low-dropout
(LDO) voltage regulator (IC1). Jumper
JP1 is available for putting the ESP-01
into programming mode.
LED1 indicates that the supply voltage is
present, however since the ESP-01 has
its own power LED, LED1 (together with
R1) may be omitted.
K1, which is pin-compatible with an FTDI
cable, permits connecting a USB-to-serial
converter of the 3.3 V type.
Transistor T1 will make interfacing the
emulator to your clock slightly easier as it
translates the 3.3-V level of the ESP-01’s
output to the logic voltage level of your
DCF77 clock. Collector resistor R4 may
be omitted if the clock at hand already
has a pull-up resistor at the input of the
DCF77 decoder.
The DCF77 output signal gets inverted
by T1, but the software fixes this. You
may need to check the documentation
of the DCF77 receiver module in your
clock to see if the output signal should
be inverted or not. Of course, it is always
possible to use the good-old ‘trial and
error’ method to find out which polarity

project information
DCF77

intermediate levelÆ
entry level

expert level

2 hours approx.

£14 / €15 / $16 approx.

SMD soldering iron,
computer,
Arduino IDE

ESP-01
emulator

ESP8266
NTP Wi-Fi

ESP8266

ESP-01

CH_PD

MOD1

GPIO2
GPIO0

GND

VCC

RST

TX
RX1

7

6
2

5
4

3
8

R5

3k
3

JP1 2

1

FLASH

R3

3k
3

K1

1
2
3
4
5
6

RS232 TTL/ FDTI

RX
TX

TX
RX

R2
47k

T1

BC547

R4

3k
3

VCCK2

1
2
3

C3

100n

LM3940 3V3
IC1

C1

470n

C2

TAB

100u 16V

DCF

GND
+

150713 - 11

to DCF clock

R1

22
0R

LED1

WiFi module

Figure 1. The intelligence of the DCF77 emulator resides in the ESP-01 Wi-Fi module.

24 March & April 2018 www.elektormagazine.com

Construction
Although many parts are SMT (surface
mount technology) types, soldering and
assembling will not be too difficult.
Even though the BOM includes an 8-way
(2×4) socket strip for mounting the ESP-
01 module, to save space (height) and
improve mechanical stability it is pref-
erable to solder the ESP-01 directly on
the main PCB without this socket. You
can also temporarily mount a socket and
remove it once you are sure that every-
thing is working fine.

The sketch has to be adapted to
your setup
After assembling the board, it is time
to program the ESP-01 module with the
Arduino sketch ESP8266_NTPtoDCF avail-
able as a free download from [1]. If you
have never programmed an ESP8266-
based module before with the Arduino
IDE, it is necessary to install the ESP8266
Boards Pack age first. More on this sub-
ject can be found on [2] and many other
websites, as well as in articles.
Three things need to be set up to make
the sketch work with your DCF77 clock:

1. the credentials for your Wi-Fi
network;

2. the URI of the time server used for
synchronization;

3. the polarity of the DCF77 emula-
tor’s output.

minute (“At the third stroke, the time will
be…”), not the actual time. Finally, the
NTP time received is probably not on a
minute boundary. To correct for this we
subtract two minutes from the received
time and send them to the clock, followed
by a third complete minute. This way we
ensure that the clock receives enough
data to be able to synchronize to it and
extract the correct time.

time might seem a trivial task but it’s
likely more complicated than you think.
First of all, the time received from the
NTP server is the number of seconds
elapsed since 1900. Second, the library
used for time calculations uses Unix time
— the number of seconds elapsed since
1970 — so NTP time must first be con-
verted to Unix time. Third, the DCF77
protocol transmits the time of the next

Figure 2. The pulses produced by the emulator are timed perfectly. A logic one (left pulse) is
200 ms, a zero is 100 ms and the time between each pulse is one second.

www.elektormagazine.com March & April 2018 25

Module’ as board type and the correct
COM port number of your USB-to-serial
interface. Compile and upload the sketch.
When the upload is completed open the
‘Serial Monitor’ in the Arduino IDE (again
in the ‘Tools’ menu). The ESP module will
echo useful information to your computer
screen to check if the DCF77 simulator is
doing its job correctly. First it will show if
the ESP-01 is able to connect to your net-
work. If it isn’t, verify that you entered
the correct network SSID and password
in the sketch.
Once a connection has been established,
the time server is read and decoded time
information is displayed. Please note that
the time on your screen is two minutes
fast — this lead is needed to synchronize
the DCF77 clock in time!
If the connection to the time server is
not made, you may have misspelled its
URI. Correct it in the sketch.
Every time you make modifications to
the sketch it must be recompiled and
reprogrammed into the ESP-01 mod-
ule. Remember to power cycle the circuit
(unplug and plug K1) to put the module
back in programming mode.

Install the emulator in the clock
Once the information in the Serial Mon-
itor is correct, the circuit is ready to be
installed in your DCF77 clock.
Remove the programming cable from K1
and open jumper JP1. Remove the old
DCF77 receiver from your clock. In many
cases it will be a separate module with
three wires (power, 0 V and DCF77 sig-
nal). Connect K2 of our circuit to the now
unconnected input of the clock.
If you want to be sure that the out-
put of our DCF77 emulator produces a
valid DCF77 encoded signal, there are
numerous Arduino-based (test) projects
on the Internet with DCF77 decoders.
We tested our prototype with the sketch
found at [3].

(150713)

Web Links

[1] www.elektormagazine.com/labs/
dcf77-emulator-with-esp8266-
elektor-labs-version-150713

[2] https://github.com/esp8266/
Arduino

[3] https://arduino-hannover.
de/2012/06/14/dcf77-empfanger-
mit-arduino-betreiben/

[4] www.elektormagazine.com/150713

The ESP-01 needs to connect to your
Wi-Fi network to enable it to collect time
information from an NTP server. To make
this work the credentials for the Wi-Fi
network must be entered at the top of
the sketch:

char ssid[] = “your_network_name”;
// your network SSID (name)

char pass[] = “network_password”;
// your network password

The URI of the NTP time server must be
defined too:

const char* ntpServerName = “0.nl.
pool.ntp.org”;

In this case a server for the Dutch (NL)
time zone is specified, but you may pre-
fer another one.
The polarity of the DCF77 emulator
output signal is defined in the function
DcfOut:

case 0:
 if (PulseArray[PulseCount]!=0)
 digitalWrite(LedPin,0);
 break;
case 1:
 if (PulseArray[PulseCount]==1)
 digitalWrite(LedPin,1);
 break;
case 2:
 digitalWrite(LedPin, 1);
 break;

Shown here is the active-high version
(output normally logic low, pulses are
logic high). For an active-low output sig-
nal (output normally logic high, pulses
logic low) invert the ‘0’ and the ‘1’s of
the three digitalWrite commands.

Programming the ESP-01
Before we continue, an important remark
first: never connect power to K2 when
a USB-to-serial converter is powering
the circuit through K1 (or the other way
around). Disrespecting this No-No will
short two power supplies, and may dam-
age your DCF77 clock, your computer or
both. Don’t come crying to us.
Close jumper JP1 and connect a 3.3-V
FTDI-cable-compatible USB-to-serial
converter between K1 and your com-
puter. JP1 must be closed at power on to
switch the ESP-01 module to flash (pro-
gramming) mode. In the Arduino IDE, on
‘Tools’ menu, select ‘Generic ESP8266

component list

UART

G
N

D

+ D
C

F

4

1

6

1

C3

R2 R3T1

R4

R5

from the store
ª150713-1
bare DCF77 emulator PCB

ª150445-91
ESP-01 module

